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Preliminaries – Causal Discovery

Example

Z1

Z2 Z3

Z4 Z5

• Vertices set V = {Z1, . . . ,Z5} represents
random variables, and edges set E represents
relations between pairs of variables.

• Given the graph, the data are assumed to be
generated via

Z1 = ε1;

Z2 = aZ1 + ε2;

Z3 = bZ1 + ε3;

Z4 = cZ2 + ε4;

Z5 = dZ2 + eZ3 + ε5.

• Causal discovery aims to infer the (invariant parts of the) underlying
graph from observational data.
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Preliminaries – the PC Algorithm

The PC algorithm is a reference causal discovery algorithm.

Ruifei, et al. 16th September 2016 Copula PC Algorithm 5 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

Preliminaries – the PC Algorithm

The PC algorithm is a reference causal discovery algorithm.

The basic procedure

1 start from a fully connected undirected graph;

2 remove edges according to conditional independence tests,
resulting in an undirected graph, called skeleton;

3 apply various edge orientation rules, resulting in a partially
directed graph, called CPDAG.
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Preliminaries – the PC Algorithm for Gaussian data

How to conduct conditional independence tests

• Based on partial correlations, denoted by ρuv |S : when
Z ∼ N (0,C ),

• Zu ⊥⊥ Zv |ZS ⇔ ρuv |S → 0⇒ remove edge Zu − Zv ,
• ρuv |S can be computed from the correlation matrix C ,
• Using standard hypothesis testing with significance level α, the

conditional independence tests boils down to

Zu ⊥⊥ Zv |ZS ⇔
√
n − |S | − 3

∣∣∣ 12 log
(

1+ρ̂uv|S
1−ρ̂uv|S

)∣∣∣ ≤ Φ−1(1− α/2).
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Preliminaries – Gaussian Copula Model

Definition (Gaussian Copula Model)

Consider two random vectors
Z = (Z1, . . . ,Zp) and
Y = (Y1, . . . ,Yp), satisfying the
conditions

1 Z ∼ N (0,C ) (latent)

2 Yi = F−1i (Φ(Zi )) for i = 1 : p

where Fi
−1(t) is the pseudo-inverse of a

cumulative distribution function Fi .
Then this model is called a Gaussian
copula model with correlation matrix C
and univariate margins Fi .

Example

Y1 Y3

Z1

OO

Z3

OO

Z2

��

Z4

��

Y2 Y4

Gaussian Copula Model.
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Problem Analysis

Challenges current PC algorithms face

• Rank PC, a modification of standard PC, uses rank correlation
instead of Pearson correlation and works fine when all Fi in
the Gaussian copula model are continuous.

• However, the presence of discrete margins brings on two
challenges.
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Problem Analysis

Challenge 1

Ties make rank(Yi ) different from rank(Zi ), so that

Rcorr(Y ) 6= Rcorr(Z ) ≈ C .

So, we can no longer use the rank correlations on the observed
data as an estimate of the latent correlations.
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Ties make rank(Yi ) different from rank(Zi ), so that

Rcorr(Y ) 6= Rcorr(Z ) ≈ C .

So, we can no longer use the rank correlations on the observed
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Problem Analysis

Challenge 2

• Discrete variables incur some information loss.

• This needs to be taken into account when applying
conditional independence tests.
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Problem Analysis

Challenge 2

• Discrete variables incur some information loss.

• This needs to be taken into account when applying
conditional independence tests.

We therefore introduce the notion of an “effective number” of
data points, denoted by n̂(≤ n):

Ruifei, et al. 16th September 2016 Copula PC Algorithm 8 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

Problem Analysis

Challenge 2

• Discrete variables incur some information loss.

• This needs to be taken into account when applying
conditional independence tests.

We therefore introduce the notion of an “effective number” of
data points, denoted by n̂(≤ n):

Zu ⊥⊥ Zv |ZS ⇔
√
n̂ − |S | − 3

∣∣∣∣12 log

(
1 + ρ̂uv |S

1− ρ̂uv |S

)∣∣∣∣ ≤ Φ−1(1− α/2)

Ruifei, et al. 16th September 2016 Copula PC Algorithm 8 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

Problem Analysis

Challenge 2

• Discrete variables incur some information loss.

• This needs to be taken into account when applying
conditional independence tests.

We therefore introduce the notion of an “effective number” of
data points, denoted by n̂(≤ n):

Zu ⊥⊥ Zv |ZS ⇔
√
n̂ − |S | − 3

∣∣∣∣12 log

(
1 + ρ̂uv |S

1− ρ̂uv |S

)∣∣∣∣ ≤ Φ−1(1− α/2)

How to estimate the effective number of data points from mixed
data?

Ruifei, et al. 16th September 2016 Copula PC Algorithm 8 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

Outline

Preliminaries and Problem Analysis

Method

Experimental Results

Summary

Ruifei, et al. 16th September 2016 Copula PC Algorithm 9 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

A Two-step Approximate Inference Method
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A Two-step Approximate Inference Method

Definition (Projected Inverse Wishart Distribution)

If Σ follows an inverse-Wishart W−1(Σ; Ψ, ν) and C is the
corresponding correlation matrix, then C follows a projected
inverse-Wishart:

P(C ) = PW−1(C ; Ψ, ν) .

Ruifei, et al. 16th September 2016 Copula PC Algorithm 10 / 23



Preliminaries and Problem Analysis
Method

Experimental Results
Summary

Radboud University Nijmegen

A Two-step Approximate Inference Method

Using Bayesian framework, we usually choose the prior for
correlation matrix to be

P(C ) = PW−1(C ; Ψ0, ν0).

• In fully Gaussian cases, we have exact inference:

P(C |Z ) = PW−1(C ; Ψ0 + Z
T
Z , ν0 + n) .

• In Gaussian copula cases, we cannot get the exact inference,
but it is easy to draw samples from the posterior distribution
P(C |Y ) in some way, e.g., Hoff’s Gibbs sampler based on the
extended rank likelihood.

C (1), . . . ,C (m) ← Gibbs sampler(Y )

Ruifei, et al. 16th September 2016 Copula PC Algorithm 11 / 23
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A Two-step Approximate Inference Method

• For a Gaussian copula model, we assume:

P(C |Y ) ≈ PW−1(C ; Ĉ , n̂) for some Ĉ , n̂ .

• Then, we can estimate the two parameters Ĉ and n̂ from the
Gibbs samples C (1), . . . ,C (m).

• How to estimate?
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A Two-step Approximate Inference Method

We proved a property of the projected inverse-Wishart Distribution.

Theorem

If the correlation matrix C follows a projected inverse-Wishart
distribution with parameters Ψ(Ψii = 1) and ν, i.e.,

P(C ) = PW−1(C ; Ψ, ν),

then, for each off-diagonal element Cij(i 6= j) and large ν, we have

E [Cij ] ≈ Ψij and Var [Cij ] ≈
(1− (E [Cij ])

2)2

ν
.

Ruifei, et al. 16th September 2016 Copula PC Algorithm 13 / 23
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A Two-step Approximate Inference Method

• According to the property, we have
• Ĉ ≈ 1

m

∑m
k=1 C

(k)

• n̂ ≈ 1
p(p−1)

∑
i 6=j νij , where νij ≈ (1−(E [Cij ])

2)2

Var [Cij ]

• Take the two parameters estimated above as the two inputs of
the standard PC algorithm, resulting in the Copula PC
algorithm, simply denoted by

CoPC = pc(Ĉ , n̂) .

• We can also use these samples C (1), . . . ,C (m) to do causal
discovery in another strategy: Stable Copula PC algorithm.
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Stable Copula PC Algorithm

Stable Copula PC Algorithm

• Choose l(l < m) instances from C (1), . . . ,C (m);

• Compute and store G̃i ←− pc(C i , n̂) for i = 1 : l , resulting in
{G̃1, . . . , G̃l};

• G̃s ←− Only keep the edges that occur more frequent than
the pre-defined threshold among {G̃1, . . . , G̃l}.
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Causal Discovery on Simulations

We compare the Rank PC, Copula PC, and Stable Copula PC on
simulated data following general Gaussian Copula distribution.
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Causal Discovery on Simulations

We compare the Rank PC, Copula PC, and Stable Copula PC on
simulated data following general Gaussian Copula distribution.

Simulated Data

G −→ C −→ Z ∼ N (0,C ) −→ Y

• Given a DAG G , it implies a correlation matrix C ;

• Draw n data points of Z (with p variables) from N (0,C );

• 1
4 of p are discretized into binary variables, another 1

4 into
ordinal with 5 levels, the remaining half are still continuous,
resulting in the simulations of Y ;

• The resulting data follows a general Gaussian Copula
distribution with both discrete and continuous margins.
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Causal Discovery on Simulations

We compare the Rank PC, Copula PC, and Stable Copula PC on
simulated data following general Gaussian Copula distribution.

Measures for Testing the Performance

• True Positive Rate (TPR), percentage of correct edges in the
resulting skeleton.

• False Positive Rate (FPR), percentage of spurious edges in
the resulting skeleton.

• Structural Hamming Distance (SHD), counting the number of
edge insertions, deletions, and flips in order to transfer the
estimated CPDAG into the correct CPDAG.

• TPR and FPR are for the skeleton while SHD is for the
CPDAG (small value means good performance).
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Causal Discovery on Simulations

We compare the Rank PC, Copula PC, and Stable Copula PC on
simulated data following general Gaussian Copula distribution.

Test Four Situations

• We choose E [N] ∈ {2 (Sparse), 5 (Dense)}.
E [N] is the average neighborhood size which represents the
sparseness of a graph.

• Choose p ∈ {10 (small), 50 (large)}.
• The different combination of sparseness and dimensionality

results in four situations.
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Causal Discovery on Simulations – Results on 10 nodes

TPR (p = 10), sparse

500 1000 2000 5000

0.
75

0.
85

0.
95

sample size (n)

T
P

R

SCPC
CoPC
RPC

FPR (p = 10), sparse

500 1000 2000 5000

0.
00

0.
02

0.
04

0.
06

sample size (n)

F
P

R

SCPC
CoPC
RPC

SHD (p = 10), sparse

500 1000 2000 5000

2.
0

3.
0

4.
0

5.
0

sample size (n)

S
H

D

SCPC
CoPC
RPC

TPR (p = 10), dense

500 1000 2000 5000

0.
45

0.
55

0.
65

0.
75

sample size (n)

T
P

R

SCPC
CoPC
RPC

FPR (p = 10), dense

500 1000 2000 5000

0.
02

0.
06

0.
10

0.
14

sample size (n)

F
P

R
SCPC
CoPC
RPC

SHD (p = 10), dense

500 1000 2000 5000

13
15

17
19

sample size (n)

S
H

D

SCPC
CoPC
RPC

Figure: Performance of Rank PC, Copula PC, and Stable Copula PC for
10 nodes, showing the mean of TPR, FPR, and SHD over 100
experiments together with 95% confidence intervals.
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Causal Discovery on Simulations – Results on 50 nodes
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Figure: Performance of Rank PC, Copula PC, and Stable Copula PC for
50 nodes, showing the mean of TPR, FPR, and SHD over 100
experiments together with 95% confidence intervals.
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Experimental Conclusions

• For sparse graphs, Copula PC and Stable Copula PC show a
large advantage over Rank PC, which becomes more
prominent with increasing sample size.

• For dense graphs, the advantage still exists, although smaller
than sparse graphs.

• Overall, Copula PC and Stable Copula PC outperform Rank
PC, especially in the sparse cases with larger sample sizes.
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Summary

• We introduced a novel two-step approach for estimating the
causal structure underlying a Gaussian copula model on mixed
data.

1 draw samples on correlation matrix from P(C |Y ) via Gibbs
sampler based on extended rank likelihood;

2 estimate the underlying correlation matrix and the effective
number of data points, assuming these samples follow a
projected inverse-Wishart distribution.

• The experimental results show that Copula PC algorithm and
stable Copula PC algorithm outperform the current Rank PC
algorithm in the presence of discrete margins.
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Thanks for your attention!
Any questions?
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